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ABSTRACT

1.
Expansions of Kamp6 de Feriet' s double hypergeometric

Ka
function of higher order (i. e. with more parameters) in two

va
variables are obtained. By specializing the number of the

parameters in this function, new and known expansions of

the four double hypergeometric functions of two variables are

deduced.
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EXPANSIONS OF KAMPE DE FERIET'S

DOUBLE HYPERGEOMETRIC FUNCTION OF HIGHER ORDER

F. M. Ragab

1. In a previous paper [ I] in the Crelle journal I obtained expansions of

Kampe de Feriet's function of higher order (i.e. with more parameters) in two

variables. It is defined by the following definitions

F x,y =
p Valp .. , VPa

S61,61 ; ... ; 6 ,

(V

fl(aj;m+n) II {(Pj;m)(PI; n))00 Go m n

m=0n=0 A(y ;m+n) rl{(6 ;m)(6' ;n)) rn!!!
J=l J=l

where ý±+ v< p+ o- + 1 and (a;r) =r(a+r)/r'( .

For the definitions and properties of this function the reader is referred

to the work of Appell and Kampe de Feriet's [ (], [3] and [4]. For special values

of the parameters, the function (1) reduces to the four double hypergeometric

functions of two variables. So we have
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where F[I],F 21 F[J3] and F[4] are AppellIs functions (see [4], p. 14).

Also it is easily seen that:
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J. Burchnall and T. W. Chaundy [ 5] gave an extensive list of expansions

of Appall's double hypergeometric functions. In this paper I shall give a number

of expansions of Kampe de Feriet's function (1) and show how the results of

Burchnall and Chaundy can be deduced, from my general theorems, as particular

cases. Burchnall and Chaundy introduced a certain type or differential operator

and deduced their results by an application of these operators. Their argument

is purely symbolic. My method in deriving the main theorems is straightforward

and is based on series derangement. It can give some other expansions which
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are not stated in [ 5]. It may be noted that the parameters and the variables

are such that the functions involved exist.

The expansions will be stated and proved in section 2 while the particular

cases are deduces in section 3. The following elementary expansion is needed

in the proof:

p
(a i ,a x+y)H n(aj;m+n) mm' ap; Wo 0 m m

p q m n=0 q m! nq

j=l

The fclIowing results will also be required in the proofs:

Gauss theorem:

, P; 1= r(-y) r( y-a- R(y-cL-P) > 0 (10)2r r(yf-my-r(

V

Saalschi~tz's theorem:

a, P, y; I

F1 r( E rl+a- r(l+p-. ) r( l+y-cr)
2( P J ) r (-)rp-a) r(p-p) r(p-y) ()

where p+a( =a+P + y+l and if a, P or y is anegative integer.
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2. The mAin thpenrpmcz? Thp. PwnAn~inn~q tr hp nrciupe' ar

FT(c ;r)H b~)(-br
00 n a 2r {(Pn;r)( 3r)} ( )c-b;r

E ~ i= (-XY) r

r=O -11 y.2rn(6I. y;2)H ( r)( 6 r)) ( c; r)
j=1 ~ j=1

p.,+l a +2r,. .a +2r, b+ r

v P+r,P'+r;..1 +r,P'+r

- 6+r, 6 '+r;..6 +r,6' +r

( 
-+ l 

a

where p.+v<p+cT

00 n~ (ai 2r) (p Pr)( ~r)(b; r)(c-b; r) 2

E -j 1 ( -x2r

( 2r, . a.Wa 1 +2r, b+r, P+p 
+2r'

I Z , 9y + 2r +rx

=F 2 1P;b x~x ,where lxli<1(3
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j (-XY) r

r=O r. -y Zr) (c; r)

(a.1+2r,. a. +2r; b+r; y

xF I b ýy(4

1 yb 09b

(14

00 H (a 2Zr) (b ;i)

r=O I~ ;r

af a.+2r, ..o.9a R +2r, b+r; x~

X y+l ~+2r, ..o.,ýp + Zr +Y

1 bp b
F I 1 .. Y x, y (15)

where < p, lxi + lyl <1I
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(a,; 2r) (xy) r

j =l F1 ^
P 11 P

r=O r! nI (y 2;r)(b; r) +2r, , I +r

j=1

fL+l a, ,a b

*F x, y , (16)
P ¥I) Y "" •p

1 b, b

where i± < p + 1, Ix1 + lyl < I 1

Proof of (12): When p + v < p + o- + 1, then from (1) the left side of (12) is

equal to

.V

0o CO W (a 2Zr) R {( r)(P', r)}(b; r)(c-b; r)
=1 i = jl j~(_xy) r (b+r;m+n)

r=O m=O n=O m on
r' 1Y ( 2.;2r) H {(6.;r)(6!;r)}(c;r)

j =1 jl =1

p.V
R (ac+2r;m+n) fl {(P +r;m)(Pll+r;n)}

3m i

p 0-

H (y•+Zr;m+n) Hl {(6 j+ r; m)( 6+r ; m)}
1= 1 j==1

Here write m = p - r, n = q - r, change the order of summation putting

the first summation last, noting that .he function (1) is absolutely convergent

(see [4], p. 150 and [1], p. 119) and get

p.v , i ,-,c b

0H 00 11 (aj;p+q) HI {(Pjp)(P•;q)}(b;p+q) xp q (pý -q,c-b;I

j =11#589 17= p'qiPq 21\l{b-pp(6;)
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Now sum the terminating 3F2 by Saalschiitzs theorem (11) and the last

expression becomes

L v

0 (a ;p+q) H {Wp P j ; q)} (c ; p+q)(b; p)(b; q)oo •° J=l , p~ ...... q

H (•-; P+q) H {( ; p)( 6 q)) (c ; p)(c ; q)
j=l' j=l

Now apply (1) and obtain the right hand side of (12). For I =w - 1, p = w;

(12) tn combination with (8) gives (13). Also when 1 = p = 0; then (12) in

combination with (6) gives (14).

Proof of (15): Formula (15) can also be proved in the same way as (12) by

applying (9) and using Gauss's theorem (10) instead of Saalschuitz's theorem

(11). Also formula (15) can be deduced from (14) by letting c -V co i' (14).

Proof of (16): When ý < p + 1, then from (9) the left hand side of (16) is

equal to

[1 0o 0 (a ;2r) n ({a.+2r;m+n) r m n

r0m=0 n=0 P P (b;r) m! n!
r (yj; 2r) n (Yj+2r;m+n)

j =1 j =1

Again put m = p - r, n = q - r, change the order of summation and get

p qH (a; p+q) x y il (a; p+q) (b; p+q)00 00 ( ) 00 oo q

I-I 2 F 1 b' F 
p= tq

p=0 q=0 P 2 ( =0 q=0 P !q
peq. P. (yj;p+q) O ( y;p+q)(b;p)(b;q)

j =1 J l =1

by Guass's theorem (10). The result now follows from (1). Thus (16) is proved.
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3. Further expansions and particular cases: We are now in a position to obtain

many expansions included in the list of Burchnall and Chaundy ( 5], pp. 253, 254,

255) and other new expansions: Thus in (14) take p = p = 1 and get

S(a;2r)(b;r)(c-b;r) r F_ b+rr+2r;x+y b

r=O r! (y; Zr)(c ; r) - y+2r ) IF( x, , (17)

where IxI + lyl + Ixyl <l.

This is a new result which gives equation (43) of the list (5) when

y =c, namely

Li(r,(c;r)(c;r) (-xy) x F(a+Zr, b+r, c+2r; x+y) = F[ a; b, b; c, c; x, y]
r=O

where IxI + lyl + ixy

A particular case of interetL . obtained from (14) by taking y = - x.

Thus if i.< p

aI a1 +1 * a , -2~- - bRc-b 1 9 1 b9b

F b,2 2' ' ' 2 1 x b

21±+2 2p+l =F P ... 0 P P X9 - ,

Yl Y 1+1 Y __ c 1 c,c
22 2

(19)

where Jxj <1 when L= p.

In (19) let c --w o and it becomes
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01 0 b x1

2' 2 \2 2 .

where IA p and lxl < when = p.

Formula (20) gives a generalization of the formula [ 6], p. 488 (& = p = 1)

namely

1 1~ 2
F , 2-, b; x r[

32F =2 2[ 2 1 ;b, b;y 1 ;x,x -x (21)

Yl Y 1+1

2'z

where lxi <1.

Again in (17) let c oo and so obtain equation (39) of the list [5]

namely

r= ( a; 2r) (b;r) ( xy)r F , ( r= Fb 1][a;b, b; y;x, y], (22)

E r! (y; r) 2 +Z 2rI

where lxi + iyl + ixyl < 1.

In (16) take t = 2, pyl, and get

3 al 1,CL., b
oo(al; ?2rI(cL2; 2r) [• +2r aZr; x+y• 0

r! ( -y; Zr) ( xb; r) r F I a+=F x, , (23)

r=O 2 1 +2r I y /I
1bp b

where XI/x + l'/yl <1.

-10- #589



(2•3 generalizes formula (41) of Burchnall and Chaundy p, 255 of 1 5 1

(b namely

0 a(Il; 2r)(a 2; 2r) [•l a1+ 2r,'a 2+2r; x+y a 4] ;Y ; )y( 42=• r(l Zr)( ~r(xy) r zF[1 Z +r) =r aa;¥ ;x ]; (24)

Zr=O (y 1 ;2r)(Y1 ;r) 21 FL 1~ vy

where I xI + I yI < I.

Another particular case of interest is obtained by taking y = -x in (16).

Thus we have if <_ < p

a1 a+1 a PL+l 2 2-2p x2

F 2 2 ' ' ''' 22 2
2 20 p+l i+1

"2 2 ''''' 2' 2

.+ l a 0, . . . ,1 a 9 b

F x, -x , (25)
P YCO1' " P

1 b, b

which gives when i = p = 1 and b = I

2F2 =F ::: x, -x (26)

SY1 +1 /
2 2 l''

/

where lxI <1,

Also take in (25) ji =, p =l with y1 =b and so obtain the new

relation
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(a 1 +1 a a+

4" .34'a

+1

where I~!l <qj."

Again in (12), take . (r = 1, v = p 0, apply (5) and get the following

result valid in a suitable region for convergence

oo (a;2r) (b; r) (c-b; r) 4 [4]

r !O ' ( 61; r)( 61; r) (c; r) (-xy) r F [a + 2r, b+r; 61+r, 6 +r; x, y]r= I'
2 al, c

=F bb y (28)

(2 6P6; C, c

In (28) let c *,0 apply (3) and so obtain equation (37) of the list

[ 5] namely

00 (aI; 2r) (b; r) r[4] 2

r~o (;is r)( 6; r) (-xy) F a1[+Zr, b+r; 61+r, 61+r; x, y] =F [a 1; b, b; 61, 6I x, y],

(29)

where lxI +2 Z/jZ-xyl + lyl < 1.

Alsoin(28) take 61 =6 b andget

00 (a1; Zr) (c-b; r) r [4] 4)

E r. (b;r)(c; r) (-xy) F [a 1 +2r, b+r; b+r, b+r; x, y] :F [al, C;C,C;xy],
r=O(30)

where IN/xj + 14yl < 1; which is a new relation.
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In(12) take I = p -0, v =T =1, apply (3) and get

Go 13; rl(P1 rl(b; r) (c'b; r)x

1-xy)r F[ 2][b+r;1+r, P I+r;61+r, 61 r; x,y
r.0 (61; r) ( 6 I; r) (c; r)r=O I I

I c

,F 2 p 1 1 ;b, b x, y (31)
0 

.
0 .

*.
S616, c, c

where Ixi + lyi + ixyl < I.

In (31) let c -- Qo, apply (7) and so obtain equation ( 27) of the list

[5], namely

00 1P1; r)(Pl; r)lb; r)
1r r) ("xy)r FL 2][b+r; Pl+r, P'+r; 61 +r, 6'+r; x, y]

r!0r (61 r)(6; 1r1

= 2F, 2F 1, (32)

61 611

where lxi + lyl + Ixyl < 1.

In(12) take ji=o =0, v = p=l, apply(2) andget

0 0 P I r ) ( P I; r ) ( b ; r ) ( c -b ; r )r W
r)( rX;• Fr)l(;r) c r(')rF~l][b+r; P1+r, P'+r; y+2r;x, y]

r=0 (r! 2r)(c; r)11

Ilc

= 2 P1 1;byb x,y33

19 c-

#589 -13-

Tj IW



where Ixyl < z

(33), in virtue of (7), gives for the particular case y = c formula (31)

of the list [ 5 ] namely

co ( ; r)( ; r)(b; r)(c-b; r)

E !"(c; Z( r .,-xY)r F[ ']b+r; 131+r, f3+r; c+2r; x, y]
r=O r! (c; 20(c; r)

- (Ply~ b; x 2FIP1 ;y(34)

where jxyi < ) ( )

When c-oo, (33) gives if Ixyl <-:

c0 0 ; rllP r) (b; r)

r=O 1 r ) (br) )( xy) rF [1b+r; P +r, P'+r; y +Zr; x, yj

0

F I )P ly 1, 1 _ ,b;y;x,y] (35)

(0

which is formula (33) of the list [ 5].

In (33) take P = P =c, apply (2) and get the new relation

O (_b; r)(c; r)(c-b; r) (-xy) r Fr )b rcr ~ ; +rxy=[l 11 ;by] I

r=O r! (yI; 2r) rF6)b+r;c+rc+r;y 1+Zr;x'y]=F~l] bb; x'(36)

where Ixyl <7

In (14) take p. = p 0, apply (3) and get

-14- #589
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00

V' (b;r)(c-br) _, -r -. 2b-]r,..h., ho.n vr -V 371

r=O

where lxi + 1lW < I.

When c -*0, then (37) becomes if lxi < 1, Wyl < 1

Z r)(-"xy) r(lx-y) -b-r =(l-x-y+xy)-b , (38)

r=O r!

which is obvious.

In (16) take IA = p = 0, and get if lxi + lyl < 1,

(11 b

F (b ;x exY F x,y , (39)
0 0 a .

"I b, b

which gives when y = x, the known formula ( 7 ], p. 101)

F x( b = eb(x 
(40)

n+m+l n+m+2 3
In (16) take I = 2, p =, with a=- '- = 1 =n +

apply the relation

n+m+l. n+m+. n±nm+l n+m+2 "inm
r'( - ) r F) 2 2 2 i t+ 1 n+m+Q

3 -r-1 2 am n2F z i ZIX.i

r(n+) n++ ) 2 (z+l)m
2 2

(41)

where Qm(z) is the associated Legendre function of the second kind; and get
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S(_,)r (x+y-l) r (Q m;rZr.. x +n+2r (x-;-
r-O r rt o ;r) -

n+m+l fl+m+2

- .-. 2 ' 2
n -n i 'r(n+m+l) F ....... • • x,y (42)

n+ 3n lrr(2n+-!) n+ 31 b, b

where Ix+y1 <i.

Again in (16) take L = 0, p 1, with y v + 1, apply the relation

flv+l) oFI v+l (43)

where J (z) is the Bessel function of the first kind; and get

Z (.-1) 7 Zr r

r=O r!(b ;r) \v+y 2 Iv+r

l b

- ' i x+)7 F 0 x,Y) . ( (43)
""1 vI.+l

22 r(l+v) 1 bqb

In (14) take y = c, apply (7) and so obtain a formula for generalized

Whittaker functions (see [ 8], p. Z39) namely

0 0 ( ; r ( - ; r _c ( b 4 r ; x + y ( ; x( 4
r=OZi r.Ic 2rl;r -y FI c+2r =IF, IF, 4
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Finally in (1U) take A- O, p I with ¥1 c, apply (7) and get

V

00 {( ;r) (';r)} (b;r)(c-b;r)
Ej= (-XY)r

r=0OO
rr(c;2r) {(6 r)( 6; r)}(c; r)j =1 6; 6

1 b+r r

v Pl+r,P P+r;... ;P•+r,p ' +rX F V x,

1 c+Zr

o- 6+r, 6'+r;...;6 +r, 6' +r

P19 o,P,,,b;x Pl ,1 P v; b; y

V+l- F G+1F V+1Fo" G-+1 6 o 6 C ), (45)

6 *, 6 c \s, s

where v<o- +1 and Ixi, lyl <1 when v <o" +1.-I

A particular case of interest is obtained from (45) by taking v = 1, a = 0.

Thus we have, in virtue of (2)

0 (11; r) (1 ; r) (b; r) (c-b; r)

E r(c;2r)(c;r) ('-xy)r F [1]b+r; 1 1+r, I +r;c+2r;x'y]
r=O r c r c

)FI 2 FI ) (46)
2c

which is (34) again.
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